The Prevalence of Fetal Losses at Mansoura University Hospitals (Observational, Cross-Sectional Study)

Nada Mohammed Moustafa Albasuony, Khaled Samir Ismail, Maged Ragheb Elshamy, Osama Mahmoud Warda, Shimaa Zakaria

Department of Obstetrics and Gynecology, Faculty of Medicine, Mansoura University

Corresponding author: Nada Mohammed Moustafa Albasuony, Email: nadabasuony0@gmail.com, Mobile:01062036181

ABSTRACT

Background: A pregnancy loss (PL) is devastating for the parents, and knowledge of why the foetus died can be useful in several ways. It may help the parents to cope with the loss of their expected child, let them and the clinicians know whether or not they could have done anything to avoid the foetal demise.

Objectives: To determine the prevalence of pregnancy loss after 12 weeks of gestation at Mansoura university hospitals. **Patients and methods:** The study was conducted at the Department of Obstetrics and Gynecology, Mansoura University Hospitals, Mansoura, Egypt, within a period from January 2022 to December 2022. This study included all gravid women who had lost their pregnancy after 12 weeks of gestation and who were presented to Mansoura University Hospitals.

Results: The prevalence of pregnancy loss among females beyond 12 weeks' gestation was 4.8%. The prevalence of associated comorbidities was 7.5%, 17.4%, 3.3%, 3.6%, 3%, 0.9%, 0.9%, and 1.8% for DM, HTN, thyroid disease, asthma, cardiac disease, SLE, APS, and thrombophilia, respectively.

Conclusion: The current study concluded that pregnancy loss after the first trimester although not common, but it stills represent a major burden on the healthcare system. Some factors were shown to be associated with abortion including older age, multiple pregnancies, multiple deliveries, previous NVD, previous Cs, previous pregnancy loss, SLE, APS, thrombophilia and previous evacuation of abortion. Some factors were shown to be associated with intrauterine fetal death including longer duration of pregnancy, multiple pregnancies, DM and HTN.

Keywords: Fetal loss, still birth, >12wk of gestational age.

INTRODUCTION

Pregnancy loss (PL) is the spontaneous end of a pregnancy resulting in demise at any point from implantation through delivery ^[1]. PL is defined as either a loss before 20 or 24 weeks of gestation (according to the 1st day of the last menstrual period) or the loss of an embryo or fetus less than 400 grams in weight if the gestation age isn't identified ^[2].

Recurrent pregnancy loss (RPL) is defined as either the demise of two or more or three or more pregnancies before the foetus reaches viability [3].

"Fetal loss," or "stillbirth," can be used when the pregnancy loss happens after 22 weeks of gestation ^[4]. Stillbirth indicates a fetus born after 20 completed weeks of pregnancy without spontaneous breath or heartbeat ^[5].

Developing nations have higher stillbirth rates, up to 97%, than developed nations [6]. Stillbirth has multifactorial causes. Early recognition of predisposing factors for stillbirth and proper antenatal management could decrease preventable of stillbirths and enhance the general outcomes of pregnancy. The main cause of preterm stillbirth was intrauterine growth restriction/placental insufficiency (23.5%),while infection (26.3%) represented most term stillbirths [7].

The cause is thought to be foetal chromosomal abnormalities, including trisomies, monosomy, and polyploidy. In addition, inflammatory and immunologic dysregulation is thought to have a role in certain patients, likely due to the effect on trophoblastic invasion ^[8].

The importance of progesterone in early pregnancy and the likelihood that progesterone deficiency may cause PL have long been hypothesized. As a result, exogenous progestogen has been broadly used to try to counter the deficiency that may be accompanied by infertility and PL ^[9]. The most frequent predisposing factor for early PL is advanced maternal age ^[10].

The current work is conducted to determine the prevalence of pregnancy loss after 12 weeks of gestation at Mansoura university hospitals such as (abortion, intrauterine fetal deaths, stillbirth), evaluate related risk factors and to understand the etiology of pregnancy loss, let the physicians identify whether or not they could have done anything to avoid the foetal demise, and help the family and clinicians take precautions before and during consequent pregnancies.

PATIENTS AND METHODS Study design

This is an observational cross-sectional study conducted at Department of Obstetrics and Gynecology, Mansoura University Hospitals, Mansoura, Egypt. The study was conducted for a duration of one year from January 2022- December 2022.

Eligibility Criteria

This study included all gravid women who have lost their pregnancy after 12 weeks of gestation who were presented to Mansoura university hospitals (cases admitted from Emergency Unit and Outpatient Clinic).

Received: 06/01/2025 Accepted: 06/03/2025 Patients who refused participate in the study, Patients who lost their pregnancy <12 weeks, or patients with incomplete data or lost follow up were excluded from the study.

METHODS

All cases were subjected to the full history taking, including age, special habits, menstrual history (state of menopause, age of menarche, cycle length and regularity), obstetric history (gravidity, parity, abortion, and pregnancy complications), past history of surgical procedures, family history, and past history of medical disease.

Clinical examination included general examination; anthropometric measurements included BMI; abdominal examination to evaluate for any sign of pregnancy, presence of scars, and ensure that the uterine fundus is no more than the upper border of symphysis pubis; and vaginal examination (cervical assessment includes dilatation and position). Obstetric ultrasound was done to document the presence of missed abortion or any type of abortion, to ensure the gestational age, and to exclude cases with any of the exclusion criteria. Laboratory investigations upon initial admission were conducted and included routine laboratory investigations (complete blood count, liver and kidney functions, and bleeding profile). Study outcomes (fate of current pregnancy) were assessed.

Ethical consideration

The whole study design was approved by the Institutional Review Board code number (MS.22.09.2142), Faculty of Medicine, Mansoura University. Written informed consent was obtained from all the cases included in the study. Confidentiality and personal privacy were respected in all levels of the study. Throughout its implementation, the study complied with the Helsinki Declaration.

Statistical analysis

Data analysis was performed by SPSS software, version 26 (SPSS Inc., PASW statistics for windows version 26. Chicago: SPSS Inc.). Qualitative data were described using number and percent. Quantitative data were described using median (minimum and maximum) for non-normally distributed data and mean± Standard deviation for normally distributed data after testing normality using Kolmogorov-Smirnov test. Significance of the obtained results was judged at the (0.05) level. Chi-Square test was used to compare qualitative data between groups as appropriate Mann Whitney U test was used to compare between 2 studied groups for non-normally distributed data. Student t test was used to compare 2 independent groups for normally distributed data.

RESULTS

Among 7000 females presented to Obstetrics and Gynecology Mansoura University Hospitals during the study period, the number of fetal losses beyond 12 weeks of gestation was 333 females with prevalence rate 4.8%.

As shown in table **1**, in the females with fetal loss, the mean age was 28.65 ± 6.21 years with range between 16 and 45 years. The mean body BMI was 39.06 ± 8.57 kg/m². There were 80 females (24%) and 106 (31.8%) who hadn't given rise to offsprings. Previous vaginal deliveries were reported in 86 females (25.8%), previous CS was reported in 163 females (48.9%), previous abortion in 127 females (38.1%), multiple pregnancy in 41 females (12.3%). The pregnancy duration ranged from 12 to 41 weeks.

Table (1): Demographic characters and obstetric history among studied cases

nistory among studied cases		
	N =333	%
Age/ years (M±SD)	28.65±6.21	
Range	(16-45)	
BMI (M±SD)	39.06±8.	57
Range	(28-35)	
Gravidity		
Primi	80	24.0
Multi	252	76.0
Parity		
No offspring	106	31.8
Have offspring	227	68.2
Prevaginal deliveries		
No	247	74.2
Yes	86	25.8
Prev CS		
No	170	51.1
Yes	163	48.9
Prev miscarriage		
No	206	61.9
Yes	127	38.1
Multiple pregnancy		
No	292	87.7
Yes	41	12.3
Pregnancy duration (M±SD weeks)	24.63±7.67	
Range	(12-41)	

Table **2** shows that 2nd trimester loss was reported in 195 females (58.6%) and 3rd trimester loss was reported in 138 females (41.4%).

Table (2): Loss time among studied cases

, , , , , , , , , , , , , , , , , , ,	N =333	%
Loss time		
2nd trimester loss	195	58.6
3rd trimester loss	138	41.4

Use of ART was reported in 13 females (3.9%), congenital anomalies were reported in 47 females

(14.1%), previous pregnancy loss in 136 females (40.8%) as shown in table 3.

Table (3): Risk factors and previous pregnancy loss among studied cases.

_		N =333	%
ART	No	320	96.1
	Yes	13	3.9
Congenital	No	286	85.9
anomalies	Yes	47	14.1
Previous	No	197	59.2
pregnancy loss	Yes	136	40.8

ART: Assisted reproductive technology

Regarding the associated comorbidities, DM was reported was reported in 25 females (7.5%), HTN was reported was reported in 58 females (17.4%), thyroid disease was reported was reported in 11 females (3.3%), asthma was reported was reported in 12 females (3.6%), cardiac disease was reported was reported in 10 females (3%), SLE was reported was reported in 3 females (0.9%), APS was reported was reported in 3 females (0.9%), thrombophilia was reported in 6 females (1.8%) as shown in table 4.

Table (4): Medical history and associated diseases

among studied cases.

iniong studied cases.	N =333	%
DM		
No	307	92.5
Yes	25	7.5
Hypertension		
No	275	82.6
Yes	58	17.4
Thyroid disease		
No	322	96.7
Yes	11	3.3
Asthma		
No	321	96.4
Yes	12	3.6
Cardiac		
No	323	97.0
Yes	10	3.0
SLE		
No	330	99.1
Yes	3	0.9
APS		
No	330	99.1
Yes	3	0.9
Thrombophilia		
No	327	98.2
Yes	6	1.8

SLE: systemic lupus erythematosus, APS: Antiphospholipid Syndrome

As shown in this table, previous evacuation was reported in 52 females (15.6%). The number of previous evacuations ranged between 1 to 10. Previous hysterotomy was reported n 2 females (0.6%). Positive consanguinity was reported in 5 females (1.5%) as shown in table 5.

Table (5): Past history among studied cases

	N =333	%
Previous evacuation		
No	281	84.4
Yes	52	15.6
Number of previous evacuation	1(1-10)	
Previous hysterotomy		
-ve	331	99.4
+ve	2	0.6
Consanguinity		
-ve	328	98.5
+ve	5	1.5

-ve: Negative, +v: positive

Regarding the fate of the current pregnancy, aborted spontaneous was done in 154 females (46.2%), VD with or without evacuation in 52 females (15.6%), CS in 71 females (21.3%) and hysterotomy in 56 females (16.8%) as shown in table 6.

Table (6): Fate of current pregnancy

	N =333	%
Fate of current pregnancy		
Aborted spontaneous	154	46.2
VD (with or without evacuation)	52	15.6
Cs	71	21.3
Hysterotomy	56	16.8

VD: Vaginal delivery CS: Cesarean section

There was insignificant difference between the females with second trimester and third trimester pregnancy loss regarding the demographic data and obstetric history as shown in table 7.

Table (7): Relation between loss time and demographic, obstetric history among studied cases.

	Loss time	Test of significance	
	Second trimester	Third trimester	
	N=195	N=138	
Age/ years	28.53±5.93	28.83±6.59	t=0.444
			p=0.657
BMI	39.89±9.44	37.95±7.34	t=0.798
			p=0.429
Gravidity			
Primi	46(23.6)	34(24.6)	$\chi 2=0.049$
Multi	149(76.4)	104(75.4)	P=0.825
Parity			
No offspring	60(30.8)	46(33.3)	$\chi 2=0.245$
Have offspring	135(69.2)	92(66.7)	P=0.621
Prev Vaginal deliveries			
No	145(74.4)	102(73.9)	$\chi 2=0.008$
Yes	50(25.6)	36(26.1)	P=0.927
Prev Cs			
No	97(49.7)	73(52.9)	$\chi 2=0.322$
Yes	98(50.3)	65(47.1)	P=0.570
Prior Abortion			
No	121(62.1)	85(61.6)	$\chi 2=0.007$
Yes	74(37.9)	53(38.4)	P=0.933
Pregnancy duration (weeks)	19.13±3.86	32.39±4.22	t=29.65
			P=0.001*
Multiple pregnancy in current pregnancy			
No	173(88.7)	119(86.2)	$\chi 2 = 0.463$
Yes	22(11.3)	19(13.8)	P=0.496
ART			
No	188(96.4)	132(95.7)	$\chi 2=0.124$
Yes	7(3.6)	6(4.3)	P=0.725
Congenital anomalies			
No	162(83.1)	124(89.9)	χ2=3.06
Yes	33(16.9)	14(10.1)	P=0.08
Previous pregnancy loss			
No	114(58.5)	83(60.1)	$\chi 2 = 0.095$
Yes	81(41.5)	55(39.9)	P=0.758

χ2: Chi-Square test, t: Student t test, *statistically significant ART: Assisted reproductive technology, BMI: Body mass index Cs: Cesarean section.

Table 8 shows that the prevalence of hypertension was statistically significantly higher in the group with third trimester pregnancy loss. There was insignificant difference between the second and third trimester pregnancy loss regarding the other associated comorbidities.

Table (8): Relation between loss time and medical history among studied cases.

	Loss time		Test of significance
	Second trimester N=195	Third trimester N=138	
DM			
No	184(94.8)	123(89.1)	χ2=3.78
Yes	10(5.2)	15(10.9)	P=0.052
Hypertension			
No	175(89.7)	100(72.5)	$\chi 2 = 16.77$
Yes	20(10.3)	38(27.5)	P=0.001*
Thyroid disease			
No	189(96.9)	133(96.4)	χ2=0.075
Yes	6(3.1)	5(3.6)	P=0.783
Asthma			
No	185(94.9)	136(98.6)	$\chi 2 = 3.15$
Yes	10(5.1)	2(1.4)	P=0.076
Cardiac			
No	190(97.4)	133(96.4)	χ2=0.311
Yes	5(2.6)	5(3.6)	P=0.577
SLE			
No	194(99.5)	136(98.6)	$\chi 2=0.794$
Yes	1(0.5)	2(1.4)	P=0.373
APS			
No	192(98.5)	138(100)	χ2=2.14
Yes	3(1.5)	0	P=0.143
Thrombophilia			
No	191(97.9)	136(98.6)	$\chi 2=0.166$
Yes	4(2.1)	2(1.4)	P=0.684

χ2: Chi-Square test, *statistically significant SLE: systemic lupus erythematosus, APS: Antiphospholipid Syndrome

Table 9 shows that there was insignificant difference between the second and third trimester pregnancy loss regarding the past history, consanguinity.

Table (9): Relation between loss time and past history, consanguinity among studied cases.

	Loss	Loss time	
	Second trimester	Third trimester	significance
	N=195	N=138	
Previous evacuation			
No	166(85.1)	115(83.3)	χ2=0.198
Yes	29(14.9)	23(16.7)	P=0.657
Number of previous evacuations	1(1-10)	1(1-3)	Z=1.54
Median (range)			P=0.123
Consanguinity			
-ve	190(97.4)	138(100)	$\chi 2 = 3.59$
+ve	5(2.6)	0	P=0.058

χ2: Chi-Square test, Z: Mann Whitney U test, *statistically significant -ve: Negative, +v: positive

Table 10 shows that there was a statistically significant difference between the second and third trimester pregnancy loss regarding the fate of the current pregnancy and the gender of the current pregnancy. In the second trimester pregnancy loss, 71.3% had aborted through vagina and 21.5% required hysterotomy. While in the third trimester pregnancy loss, CS was performed in 47.8% and VD was required in 31.9%.

Table (10): Relation between loss time and fate of current pregnancy among studied cases.

	Loss time		Test of
	Second trimester	Third trimester	significance
	N=195	N=138	
Fate of current pregnancy			
Aborted spontaneous	140(71.8)	14(10.1)	χ2=190.27
VD (with or without evacuation)	8(4.1)	44(31.9)	P=0.001*
CS	5(2.6)	66(47.8)	
Hysterotomy	42(21.5)	14(10.1)	

VD: Vaginal delivery, Cs: Cesarean section χ2: Chi-Square test, *statistically significant

Table 11 shows that mean age was statistically significantly higher in the females who had abortion. The presence of multigravida and having previous off springs were statistically significantly higher in the group with abortion. Also, previous NVD, previous CS and previous pregnancy loss were statistically significantly higher in the group with abortion. On the other hand, the use of ART was statistically significantly higher in the group with no abortion.

Table (11): Relation between abortion and demographic, obstetric history among studied cases.

	Abo	Abortion	
	No	Yes	significance
	N=206	N=127	
Age/ years	28.03±6.34	29.65±5.88	t=2.32
			p=0.02*
BMI	30±8.45	37.18±8.76	t=1.11
			p=0.272
Gravidity			
Primi	80(38.8)	0	$\chi 2 = 64.92$
Multi	126(61.2)	127(100)	P=0.001*
Parity			
No offspring	80(38.8)	26(20.5)	$\chi 2 = 12.21$
Have offspring	126(61.2)	101(79.5)	P=0.001*
Prevaginal deliveries			
No	163(79.1)	84(66.1)	$\chi 2 = 6.92$
Yes	43(20.9)	43(33.9)	P=0.009*
Prev Cs			
No	115(55.8)	55(43.3)	χ2=4.92
Yes	91(44.2)	72(56.7)	P=0.026`*
Pregnancy duration (weeks)	24.56±7.64	24.73±7.76	t=0.195
			p=0.845
Multiple pregnancy in current pregnancy			-
No	176(85.4)	116(91.3)	$\chi 2 = 2.54$
Yes	30(14.6)	11(8.7)	P=0.111
ART in current pregnancy			
No	194(94.2)	126(99.2)	$\chi 2 = 5.32$
Yes	12(5.8)	1(0.8)	P=0.021*
Congenital anomalies in current pregnancy			
No	176(85.4)	110(86.6)	χ2=0.09
Yes	30(14.6)	17(13.4)	P=.764
Previous pregnancy loss			
No	196(95.1)	1(0.8)	$\chi 2 = 289.51$
Yes	10(4.9)	126(99.2)	P=0.001*

χ2: Chi-Square test, t: Student t test, *statistically significant, ART: Assisted reproductive technology

Table 12 shows that there was insignificant difference between the females with and without abortion regarding the associated comorbidities except for SLE, APS and thrombophilia that were statistically significantly higher in the group with abortion.

Table (12): Relation between abortion and medical history among studied cases.

Table (12). Relation between abortion and medical	Aborti	Test of	
	No	Yes	significance
	N=206	N=127	
DM			
No	193(94.1)	114(89.8)	χ2=2.16
Yes	12(5.9)	13(10.2)	P=0.141
Hypertension			
No	174(84.5)	101(79.5)	$\chi 2 = 1.33$
Yes	32(15.5)	26(20.5)	P=0.248
Thyroid disease			
No	199(96.6)	123(96.9)	$\chi 2 = 0.015$
Yes	7(3.4)	4(3.1)	P=0.902
Asthma			
No	196(95.1)	125(98.4)	$\chi 2 = 2.43$
Yes	10(4.9)	2(1.6)	P=0.119
Cardiac			
No	202(98.1)	121(95.3)	$\chi 2 = 2.09$
Yes	4(1.9)	6(4.7)	P=0.148
SLE			
No	206(100)	124(97.6)	χ2=4.91
Yes	0	3(2.4)	P=0.027*
APS			
No	206(100)	124(97.6)	χ2=4.91
Yes	0	3(2.4)	P=0.027*
Thrombophilia			
No	205(99.5)	122(96.1)	χ2=5.29
Yes	1(0.5)	5(3.9)	P=0.024*

χ2: Chi-Square test *statistically significant DM: Diabetes mellitus, SLE: systemic lupus erythematosus, APS: Antiphospholipid Syndrome

Table 13 shows that the history of previous evacuation was significantly higher in the females with abortion. However, there was insignificant difference between the females with and without abortion regarding the pregnancy evacuation or previous hysterotomy, positive consanguinity.

Table (13): Relation between abortion and past history, consanguinity and positive laboratory findings among studied cases.

	Abortion		Test of significance
	No	Yes	
	N=206	N=127	
Previous evacuation			
No	206(100)	75(59.1)	χ2=99.95
Yes	0	52(40.9)	P=0.001*
Previous hysterotomy			
-ve	205(99.5)	126(99.2)	χ2=0.120
+ve	1(0.5)	1(0.8)	P=0.729
Consanguinity			
-ve	204(99)	124(97.6)	χ2=1.03
+ve	2(1)	3(2.4)	P=0.311

χ2: Chi-Square test, *statistically significant, -ve: Negative, +v: positive

DISCUSSION

The current work was conducted to determine the prevalence of pregnancy loss after 12 weeks of gestation at Mansoura university hospitals such as (abortion, intrauterine fetal deaths, stillbirth), evaluate related risk factors and to understand the etiology of pregnancy loss, let the physicians know whether or not they could have done anything to avoid the foetal demise, and help the family and physicians take precautions before and during consequent pregnancies.

The current study was conducted on 7000 females presented to Obstetrics and Gynecology, Mansoura University Hospitals (outpatient clinic and emergency unit) during the current study period, the number of cases who lost their pregnancy beyond 12 weeks was 333 females with prevalence 4.8%. Second trimester loss was reported in 195 females (58.6%) and 3rd trimester loss was reported in 138 females (41.4%). The prevalence of hypertension was significantly higher in the group with 3rd trimester pregnancy loss. In the second trimester pregnancy loss, 71.3% had aborted through vagina and 21.5% required hysterotomy. In the third trimester pregnancy loss, CS was performed in 47.8% and VD was required in 31.9%.

This came in accordance with a large study that analyzed the data of 217,484 females. They reported total of 10,121 miscarriages. Among currently married females, 82% of miscarriages happened within the initial 12 weeks, whereas 20.3% of miscarriages among unmarried females happened after the 1st trimester (> 12 weeks) [11].

In this study, the prevalence of hypertension was significantly higher in the group with 3rd trimester pregnancy loss. This is because there is a peak in cardiac output in the early 3rd trimester and blood pressure (BP) begins to increase back to basal levels [12]. So, the maximum effect of chronic hypertension is manifested during the third trimester.

In this study, the mean age was significantly higher in the females who had abortion. In the current study, the presence of multigravida and having previous off springs were significantly higher in the group with abortion. Some studies have demonstrated a higher risk of abortion with increasing gravidity [13,14], others haven't [15,16]. Potential explanations for an association include compensatory reproductive behavior (pregnancy failure is likely to be accompanied by recurrent trials at conception, resulting in higher gravidity) and short interpregnancy intervals in multigravida females.

In this study, the prevalence of SLE and thrombophilia was statistically significantly higher in the group with abortion. In the context of thrombophilic disorders in pregnancy loss another study showed that a

non-recurrent pregnancy loss following 20 to 24 weeks' gestation is accompanied by factor V Leiden, protein S deficiency, and the prothrombin *G20210A* mutation ^[17].

In the current study, the use of ART was significantly higher in the group with no abortion. This agreed with **Lidegaard** *et al.* [18] who compared the pregnancy losses among females who had conceived following assisted reproductive techniques were compared with losses in pregnancies naturally conceived or established by insemination. There results showed that there in females above 40 years, the rate of pregnancy losses was significantly diminished in assisted pregnancies compared to spontaneous pregnancies.

In the current study, the prevalence of APS was significantly higher in the group with abortion. This agreed with **Yang and Liang (2021)** [19] who showed that three or more spontaneous miscarriages and double-positivity for antiphospholipid antibodies are risk factors for abortion in women with APS. Also, **Xu** *et al.* [20] reported that APS increases the risks of negative maternal and foetal outcomes during pregnancy. Three or more spontaneous miscarriages and double-positivity for antiphospholipid antibodies are predisposing factors for adverse pregnancy outcomes in women with APS.

In this study, the presence of previous NVD and previous Cs were significantly higher in the group with abortion. This agreed with **Jiang** *et al.* ^[21] who showed that history of cesarean section was related to abortion.

In the current study, the pregnancy duration was significantly longer in the group with IUFD. Also, the previous multiple pregnancies were significantly higher in the group with no IUFD. This came in accordance with **Ahmed** *et al.* ^[22] who sowed that there was a significant relation between IUFD and multiple gravidity, previous abortion, previous IUFD.

In this study, the prevalence of DM and HTN were significantly higher in the group with IUFD. They indicated a significant relationship were high BP. This agreed with **Ahmed** *et al.* ^[22] who showed that there was a significant relationship between IUFD and diabetes mellitus (DM) and chronic hypertension. Likewise, an analytical study of IUFD conducted by **Noor** *et al.* ^[23] displayed that the most identifiable maternal risk factors of IUFD were severe preeclampsia (20%), anaemia (16%), fever (6.2%), gestational DM (5.3%).

STRENGTH OF STUDY

Study done was conducted on large number of cases.

LIMITATION OF STUDY

The current study has some limitations as the small sample size and being a single center study.

CONCLUSION

The current study concluded that pregnancy loss after the first trimester although not common, but it stills represent a major burden on the healthcare system. Some factors were shown to be associated with abortion including older age, multiple pregnancies, multiple deliveries, previous NVD, previous Cs, previous pregnancy loss, SLE, APS, thrombophilia and previous evacuation of abortion. Some factors were shown to be associated with intrauterine fetal death including longer duration of pregnancy, multiple pregnancies, DM and HTN.

Conflict of interest: None.

Fund: None.

REFERENCES

- **1.** Wang X, Chen C, Wang L *et al.* (2003): Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study. Fertility and sterility, 79(3): 577-84.
- **2. Cuenca D** (2023): Pregnancy loss: Consequences for mental health. *Frontiers in global women's health*, 3: 1032212.
- **3. He L, Wang T, Xu H** *et al.* (2019): Prevalence of depression and anxiety in women with recurrent pregnancy loss and the associated risk factors. Archives of gynecology and obstetrics, 300: 1061-6.
- **4. Bailey S, Boivin J, Cheong Y** *et al.* **(2020):** Effective support following recurrent pregnancy loss: a randomized controlled feasibility and acceptability study. Reproductive BioMedicine Online, 40(5): 729-42.
- **5. Shaaban L, Alsaleh R, Alwafi B** *et al.* (2006): Associated risk factors with ante-partum intra-uterine fetal death. *Saudi medical journal*, 27(1): 76.
- **6.** McNamee K, Dawood F, Farquharson R (2014): Midtrimester pregnancy loss. *Obstetrics and Gynecology Clinics*, 41(1): 87-102.
- **7. Southcombe J, Mounce G, McGee K** *et al.* (2017): An altered endometrial CD8 tissue resident memory T cell population in recurrent miscarriage. Sci Rep, 7(1): 41335.
- **8. Neill S (2023):** Management of early pregnancy loss. Jama, 329(16): 1399-400.
- **9. Tetruashvili N, Domar A, Bashiri A (2023):** Prevention of pregnancy loss: combining progestogen treatment and psychological support. Journal of clinical medicine, 12(5): 1827.

- **10. Jackson T, Watkins E (2021):** Early pregnancy loss. Jaapa, 34(3): 22-7.
- **11.Das M, Patidar H, Singh M** (2024): Understanding trimester-specific miscarriage risk in Indian women: insights from the calendar data of National Family Health Survey (NFHS-5) 2019-21. BMC Women's Health, 24(1): 63.
- **12. Khedagi A, Bello N (2021):** Hypertensive disorders of pregnancy. Cardiology clinics, 39(1): 77-90.
- **13. Jivraj S, Makris M, Saravelos S** *et al.* **(2009):** Pregnancy outcome in women with factor V Leiden and recurrent miscarriage. *BJOG:* An International Journal of Obstetrics & Gynaecology, 116(7): 995-8.
- **14.Metwally M, Ong K, Ledger W** *et al.* **(2008):** Does high body mass index increase the risk of miscarriage after spontaneous and assisted conception? A meta-analysis of the evidence. Fertility and sterility, 90(3): 714-26.
- **15.** Østensen M, Lockshin M, Doria A *et al.* (2008): Update on safety during pregnancy of biological agents and some immunosuppressive anti-rheumatic drugs. Rheumatology, 47(3): iii28-iii31.
- **16.Nawaz FH, Khalid R, Naru T** *et al.* **(2008):** Does continuous use of metformin throughout pregnancy improve pregnancy outcomes in women with polycystic ovarian syndrome? Journal of Obstetrics and Gynaecology Research, 34(5): 832-7.
- **17.Rey E, Kahn SR, David M** *et al.* (2003): Thrombophilic disorders and fetal loss: a meta-analysis. The Lancet, 361(9361): 901-8.
- **18.Lidegaard Ø, Mikkelsen A, Egerup P** *et al.* (2020): Pregnancy loss: A 40-year nationwide assessment. Acta Obstetricia et Gynecologica Scandinavica, 99(11): 1492-6.
- **19. Yang J, Liang M (2021):** Risk factors for pregnancy morbidity in women with antiphospholipid syndrome. Journal of Reproductive Immunology, 145: 103315.
- **20.**Xu J, Chen D, Duan X *et al.* (2019): The association between antiphospholipid antibodies and late fetal loss: A systematic review and meta-analysis. Acta obstetricia et gynecologica Scandinavica, 98(12): 1523-33.
- **21. Jiang W, Yang X, Luo J (2022):** Risk factors for missed abortion: retrospective analysis of a single institution's experience. Reproductive Biology and Endocrinology, 20(1): 115.
- **22. Ahmed ES, Elsayed Y, Abd Elhalim A** *et al.* (2022): Prevalence and associated risk factors of intrauterine fetal deaths among pregnant women at El-Manial University Hospital. Egyptian Nursing Journal, 19(1): 18-25.
- **23. Noor N, Parveen S, Madan I** *et al.* **(2020):** Analytical study of intrauterine fetal death and associated maternal conditions at a tertiary centre. Parity, 1(G2): G3.