The Effect of The Specific Phosphodiesterase Type V Inhibitor, “Sildenafil Citrate”, on Alloxan-Induced Diabetic Rabbit Corpus Cavernosal Smooth Muscle

Safwat.E. Abou Hashem*; Kariman El-Houssieni Sleim**; Soad Abdalla Sleim ** ;Hesham El-Gendy*and Ahmed A. Abd-El-Aal*

* Department of Urology and **Department of Physiology, Faculty of Medicine, Zagazig University

Abstract

This study was carried out to investigate the effect of sildenafil (S) together with the influence of sodium nitroprusside (SNP) and acetylcholine (Ach) on isolated strips of rabbit corpus cavernosum. The in vitro effects of sildenafil on non-adrenergic, non-cholinergic and nitric oxide (NO)-mediated cavernosal smooth muscle relaxation in diabetic rabbits, were also investigated. Diabetes mellitus was induced in adult male New Zealand white rabbits with alloxan (65 mg/kg, i.v). Cavernosal strips from age-matched control and 5 months diabetic animals were mounted in organ baths containing Krebs-bicarbonate solution (pH 7.4, bubbled continuously with a gas mixture of 95% O₂ plus 5% CO₂, and maintained at 37°C. Isolated strips of control rabbit corpus cavernosum were stimulated isotonically with phenylephrine (10⁻⁵M) and relaxations were induced using increasing concentrations of Ach, SNP and S alone and in combination. Also, relaxation responses of control and diabetic strips precontracted with phenylephrine (10⁻⁵M) to electrical field stimulation (EFS, 4-20 Hz) or SNP (10⁻⁹ – 10⁻³M) were assessed in the absence and presence of a submaximal dose of sildenafil (10⁻⁶M).

It was found that Ach, SNP and S relaxed the control rabbit corpus cavernosal strips in a dose-dependent manner. The relaxant effect of the test agents were ranked (from least inhibitory to most inhibitory) as follows: S, Ach plus S, SNP, SNP plus S, Ach. Moreover, it was observed that SNP-stimulated relaxations were significantly impaired in the corpus cavernosum from diabetic group compared to age-matched controls. Sildenafil (10⁻⁶M) significantly enhanced SNP-stimulated relaxation in control and diabetic groups. Electrical field stimulation-mediated relaxations of the corpus cavernosum were significantly impaired after 5 months diabetes mellitus and enhanced by sildenafil (10⁻⁶M).

In conclusion, sildenafil enhances the relaxing effect of both SNP and Ach on the phenylephrine-induced contraction of rabbit cavernosal tissue. It could also be suggested that the impairment of NO-mediated relaxation of the diabetic corpus cavernosum reflect, at least in part, a defect in guanyl cyclase activity. These findings support the use of sildenafil as an effective, orally administered, treatment for diabetic erectile dysfunction.
Introduction and Aim of the Work

Many studies have highlighted the pivotal role of nitric oxide (NO) and its stimulation of cyclic guanosine monophosphate (cGMP) in the mediation of the penile corpus cavernosal smooth muscle relaxation and erection (Kim et al., 1991; De Tejada, 1992; Trigo-Rocha et al., 1993; Finberg et al., 1993; Burnet, 1995).

NO is synthesized in the nerve terminals of the parasympathetic non-adrenergic, noncholinergic neurons in the penis corpus cavernosum and also by the endothelial cells lining the blood vessels (arteries that supply the penis) and the lacunar space of the corpora cavernosa (Burnet et al., 1992; Trigo-Rocha et al., 1993; Bredt and Snyder, 1994). It activates guanylate cyclase, resulting in an increased conversion of guanosine triphosphate to cGMP. cGMP is an important intracellular messenger for transducing extracellular signals in corpus cavernosal smooth muscle cells (Burnet, 1995; Holmquist et al., 1991). By binding to cGMP-dependent protein kinases and to cGMP-dependent ion channels, it reduces intracellular calcium levels (Meyer et al., 1993). Reduced intracellular calcium levels result in trabecular smooth muscle relaxation, enabling corporal volume expansion (Moreland et al., 1998; Carter et al., 1998). The level of cGMP is regulated by a balance between the rate of synthesis and the rate of hydrolytic breakdown to cGMP by cyclic nucleotide phosphodiesterase (PDE) isoenzymes (Beavo, 1992). Therefore agents that inhibit cGMP hydrolysis may increase the cGMP signal and could be expected to enhance the relaxation of the smooth muscle in the corpus cavernosum and thereby facilitate penile erectile responses (Ballard et al., 1998).

It is now widely accepted that the risk factors that underlie the development of vascular disease are identical to those that predispose to vasculogenic erectile dysfunction (Virag et al., 1984; Krane et al., 1989; Azadzoi and DeTejada, 1991, 1992; Shabsigh et al., 1991; Azadzoi and Goldstein, 1992; Lerner et al., 1993). A major risk factor for both atherogenesis and erectile dysfunction is diabetes mellitus (De Tejada et al., 1989; Blanco et al., 1990). The prevalence of erectile dysfunction in diabetic men is high (Krane et al., 1989; Blanco et al., 1990; Lerner et al., 1993).

Nonadrenergic noncholinergic (NANC) drive is adversely affected by diabetes mellitus (De Tejada et al., 1989) with subsequent impairment of corpus cavernosal relaxation. This may be due to, at least in part, to the development of diabetic neuropathy, which has been shown to contribute to neurogenic erectile dysfunction (Krane et al., 1989; Blanco et al., 1990; Lerner et al., 1993).

Previously, the pharmacological treatment of erectile dysfunction has been confined to intracavernosal (Virag, 1982; Von Heyden et al., 1993; Shenfeld et al., 1995) and transurethral (Padma-Nathan et al., 1997) injections of drugs such as papaverine and prostaglandine E1.

Sildenafil is a selective phosphodiesterase type 5 inhibitor, which is widely used for the oral treatment of erectile dysfunction, regardless of etiology. It enhances NO-mediated cGMP – formation / accumulation resulting in a significant relaxation of the corpus cavernosum (Ballard et al., 1996; Jeremy et al., 1997). It effectively blocks phosphodiesterase type 5-mediated hydrolysis of cGMP. Data obtained from rabbit corpus cavernosal
tissues have demonstrated that sildenafil increases endogenous corpus cavernosal smooth muscle cGMP and induces relaxation of the muscles (Jeremy et al., 1997; Chuang et al., 1988). It has also been suggested that the sildenafil-induced enhancement of cGMP accumulation is dependent on a priori endogenous NANC and parasympathetic drive (Jeremy et al., 1997).

Therefore, the objectives of this study was to (1) examine the effects of sildenafil in the physiologically important NO-cGMP signal transduction pathway for relaxation of corpus cavernosal smooth muscle and to compare it with endothelial-dependent relaxation of acetylcholine and endothelial-independent relaxation of sodium nitroprusside. (2) test the possible effect of sildenafil on relaxation of the corpus cavernosum of the diabetic rabbits and age-matched controls.

Material & Methods

Induction of diabetes mellitus:

Adult male white rabbits (n = 6) were made diabetic by injection of alloxan (Sigma Chemical Co., Pool, UK), 65 mg/kg body weight in a single dose into lateral ear vein while they were under anaesthesia (45 mg/kg sodium pentobarbital). All animals were fed ad libitum and standard rabbit plain diet and allowed free access to water.

Induction of diabetes was ascertained by determination of blood glucose concentration in blood obtained from ear artery 72h and weekly after alloxan injection and confirmed by a blood glucose level 300 mg/dL associated with marked reduction in serum insulin level at death.

Measurement of blood glucose concentration and serum insulin level:

Blood glucose was measured using Reflolux II reflectance photometer (Boehringer Mannheim, Germany) and serum insulin level was determined by Enzyme linked immunosorbant Assay (ELISA) method using specific kits (Bioscience, Europe, SA).

Organ bath studies:

The samples of corpus cavernosal tissue used to study the functional effects of sildenafil were obtained from 5 months diabetic sexually mature male rabbits (n = 6) and age matched control rabbits (n = 6). Under intraperitoneal thiopental anesthesia, penectomies were performed on the animals, with isolation of 2-3 smooth muscle strips (approximately 1x3mm) from the enveloping tunica albuginea of each animal which was then killed by cervical decapitation, the size and weights of the tissues from both control and diabetic rabbits were similar. Freshly dissected cavernosal strips were tied at each end with surgical silk threads and mounted in 10ml capacity water-Jacked tissue bath chambers containing Krebs’s-bicarbonate solution (6.9gm NaCl, 2.1 gm NaHCO₃, 0.34 gm KCl, 0.16 gm KH₂PO₄, 0.3 gm MgSO₄, 2.00 gm D-glucose, and 0.18 gm CaCl₂ in 1L distilled water) of pH7.4, maintained at 37°C by thermoregulated circuit and bubbled continuously with 95% oxygen and 5% carbon dioxide.

The upper end of each strip was connected to a lever writing on the rotating drum of the universal kymograph (Bioscience, Washington). The initial resting tension of each strip was set at 2gm, and the tissues were allowed to equilibrate for 60 minutes. The tissue samples were then washed with Krebs solution with a high (120nM) K⁺ concentration (Krebs-KCl solution) (0.22 gm NaCl, 2.10 gm NaHCO₃, 8.86 gm KCl, 0.16 gm KH₂PO₄, 0.30 gm MgSO₄, 1.98 gm D-glucose and 0.18 gm CaCl₂ in 1L distilled water) for 15 minutes to depolarize the tissue and induce a contractile response. After this step, the
tissues were allowed to return to the baseline tension by repeatedly washing them for 30 minutes with Krebs solution. The organ baths were refilled with 10 ml Krebs solution, and then the tissue strips were contracted with phenylephrine hydrochloride at increasing concentrations ($10^{-9} - 10^{-3}$M) to obtain a dose response curve for the contractile effect of phenylephrine and to find out the submaximal contractile concentration of phenylephrine. In other studies, tissues were:

a) Precontracted with the submaximal dose of phenylephrine (10^{-5}M) and dose response curves were constructed for the relaxant effect of SNP ($10^{-9} - 10^{-3}$M), Ach ($10^{-9} - 10^{-3}$M) and sildenafil ($10^{-9} - 10^{-3}$M).

b) Precontracted with phenylephrine (10^{-5}M) and dose response curves were constructed for the relaxant effect of sildenafil ($10^{-9} - 10^{-3}$M) in the presence of the minimal concentration of either SNP (10^{-8}M) or Ach (10^{-9}M) that induced a significant relaxant effect in order to demonstrate any synergistic or additive effects of sildenafil.

c) Precontracted with phenylephrine (10^{-5}M), a submaximal dose of sildenafil (10^{-6}M) was then added to the organ bath and after 15 min, dose response curves were again constructed for SNP.

d) Bathed with Krebs solution which also contained guanithidine (5x10^{-6}M), atropine (10^{-5}M) and indomethacin (10^{-6}M) to inhibit the adrenergic, cholinergerc and cyclooxygenase pathways, respectively, leaving the NANC pathway intact. The strip were then precontracted with phenylephrine (10^{-5}M) and stimulated at frequencies of 4, 8, 12, 16 and 20 Hz, with a stimulator delivering single square waves (duration 0.8 sec) in absence and presence of sildenafil (10^{-6}M) which was added to the organ bath 15 minutes before electric field stimulations (EFS). These experiments were used to demonstrate the effect of sildenafil on NANC-mediated relaxation of corpus cavernosal strips taken from 5 months diabetic and age matched control rabbits.

Drugs & Chemicals:

Ach, phenylyephrine, SNP, alloxan, guanithidine, atropine, and indomethacine were purchased from Sigma Chemical Co. (UK) while sildenafil citrate was obtained from Pfizer Chemical Co. (Egypt).

Statistical analysis:

All data were expressed as mean ±S.E and statistically analysed according to ANOVA test and student’s unpaired test. A P value < 0.05 was considered statistically significant.

Results

Table (1) illustrates the effects of alloxan-induced diabetes in adult male rabbits. Induction of diabetes significantly increased blood glucose level from 7.02±0.19 mmol/L in normal control group to 22.5±1.78 mmol/L in the diabetic group (P<0.001), and reduced blood insulin level from 82.66±2.4 pmol/L in the control group to reach 27.5±1.74 pmol/L in the diabetic group (P<0.001). Diabetic rabbits also gained significantly less body weight (3.3±0.18kg) when compared to both their initial body weight [(3.15±0.19kg), P>0.05] and the final body weight of normal control group [(4.05±0.14kg), P<0.01).

Table (2), Fig. (1) demonstrate the relaxant effect of sildenafil in absence and presence of either ACh (10^{-9} M/L) or SNP (10^{-8}M/L), Ach and SNP on phenylephrine (10^{-5}M)-induced contra-
ction in rabbit corpus cavernosal tissue strips. It was found that the inhibitory effect of test agents were ranked (from least inhibitory to most inhibitory) as follows: sildenafil, acetylcholine plus sildenafil, sodium nitroprusside, sodium nitroprusside plus sildenafil, acetylcholine. Sildenafil was observed to have little effect on the phenylephrine-induced contraction even at the highest concentration tested. However, its effect was potentiated in the presence of acetylcholine and SNP.

Table (3) & Fig (2) show the effect of sildenafil on SNP-mediated relaxation of corpus cavernosal strips taken from 5 months diabetic and age-matched control rabbits. The strips were precontracted with phenylephrine (10^{-5} M) in absence and presence of sildenafil (10^{-6} M) which was added 15 min before the addition of SNP. Results were expressed as % of relaxation (X±S.E) of the phenylephrine-induced tone.

It was found that SNP-mediated relaxation of 5 months-diabetic corpus cavernosal strips were significantly impaired when compared to age-matched control strips (P< 0.001 ; ANOVA test). A significant difference in SNP-mediated relaxation between age-matched controls and 5 months diabetic cavernosal strips at each data point using student’s unpaired t-test, was also observed. On the other hand, it was noticed that sildenafil significantly enhanced the SNP-mediated corpus cavernosal relaxation in both diabetic and age matched control strips (P< 0.001; ANOVA test respectively). A significant difference in SNP-mediated relaxation between the absence and presence of sildenafil at each data point using student’s unpaired t-test was also found.

Table (4) & Fig. (3) illustrate the effect of sildenafil (10^{-9} M) on EFS (NANC)-mediated relaxation of corpus cavernosal strips taken from 5 months diabetic and age-matched control rabbits. The strips were precontracted with phenylephrine (10^{-5} M), sildenafil was then added and after 15 min, EFS was at frequencies of 4, 8, 12, 16 and 20 Hz. It was found that, EFS-induced relaxations were significantly impaired when comparing 5 months diabetic to age-matched control strips (P<0.001 ANOVA test). However, sildenafil significantly enhanced the EFS-stimulated corpus cavernosal relaxations in 5 months diabetic and age-matched control rabbits (P <0.001 & P<0.001, respectively; ANOVA test). A significant difference in EFS-stimulated relaxation between the absence and presence of sildenafil, at each data point, in 5 months diabetic and age-matched control rabbits using a student’s unpaired t-test, was also detected.
Table (1): The effect of alloxan induced diabetes on blood glucose level, serum insulin concentration and body weight in adult male rabbits.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control N=6</th>
<th>Diabetic N=6</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mmol/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{X} \pm \text{SE}$</td>
<td>7.02 ± 0.19</td>
<td>22.5 ± 1.78</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood insulin (pmol/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{X} \pm \text{SE}$</td>
<td>82.66 ± 2.4</td>
<td>27.5 ± 1.74</td>
<td><0.001</td>
</tr>
<tr>
<td>Initial body weight (Kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{X} \pm \text{SE}$</td>
<td>3.0 ± 0.15</td>
<td>3.15 ± 0.19</td>
<td>>0.05</td>
</tr>
<tr>
<td>Final body weight (Kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{X} \pm \text{SE}$</td>
<td>4.05 ± 0.14</td>
<td>3.3 ± 0.18</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table (2): The effect of SNP, Ach and S [in the presence and absence of either Ach (10^{-9} M) or SNP(10^{-8} M)] on corpus cavernosal strips taken from control rabbits. The strips were precontracted with phenylephrine (10^{-5} M).

<table>
<thead>
<tr>
<th>DOSES (Mol/L)</th>
<th>S N=6</th>
<th>Ach+S N=6</th>
<th>SNP N=6</th>
<th>SNP+S N=6</th>
<th>Ach N=6</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-9}</td>
<td>0</td>
<td>6.66 ± 2.4</td>
<td>8.88 ± 1.4</td>
<td>11.1 ± 1.4</td>
<td>19.9 ± 1.7</td>
<td>20.575^{**}</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>0</td>
<td>12.2 ± 0.99</td>
<td>15.6 ± 1.4</td>
<td>28.8 ± 2.8</td>
<td>35.6 ± 2.2</td>
<td>51.841^{**}</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>3.33±1.5</td>
<td>21.1 ± 3.2</td>
<td>32.2 ± 2.7</td>
<td>46.7 ± 1.7</td>
<td>63.3 ± 2.9</td>
<td>86.903^{**}</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>8.9±2.2</td>
<td>27.8 ± 3.2</td>
<td>43.33 ± 1.5</td>
<td>63.3 ± 2.9</td>
<td>81.1 ± 4.00</td>
<td>97.755^{**}</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>17.7±1.4</td>
<td>36.7 ± 2.85</td>
<td>59.99 ± 3.4</td>
<td>72.2 ± 3.2</td>
<td>92.2 ± 2.04</td>
<td>117.943^{**}</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>23.3±2.3</td>
<td>53.33 ± 2.4</td>
<td>73.33 ± 3.8</td>
<td>84.4 ± 2.2</td>
<td>99.9 ± 2.4</td>
<td>123.710^{**}</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>23.3±2.3</td>
<td>53.33 ± 2.4</td>
<td>73.33 ± 3.8</td>
<td>84.4 ± 2.2</td>
<td>99.9 ± 2.4</td>
<td>123.710^{**}</td>
</tr>
</tbody>
</table>

** p < 0.001
Table (3): The effect of SNP (10⁻⁹-10⁻³ M) on phenylephrine (10⁻⁵ M)-induced tone of corpus cavernosal strips taken from control and five months diabetic rabbits in the presence of Sildenafil (10⁻⁶ M).

<table>
<thead>
<tr>
<th>SNP (Mol/L)</th>
<th>Control N=6</th>
<th>Control+S N=6</th>
<th>Control N=6</th>
<th>Diabetic N=6</th>
<th>Diabetic+S N=6</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁹</td>
<td>8.88±1.4</td>
<td>18.9±2.04</td>
<td>8.88±1.4</td>
<td>0</td>
<td>5.6±2.09</td>
<td>23.847**</td>
</tr>
<tr>
<td></td>
<td><0.01</td>
<td><0.001</td>
<td><0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁸</td>
<td>15.55±1.4</td>
<td>27.8±3.18</td>
<td>15.55±1.4</td>
<td>6.8±2.49</td>
<td>14.6±2.03</td>
<td>13.407**</td>
</tr>
<tr>
<td></td>
<td><0.01</td>
<td><0.05</td>
<td><0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁷</td>
<td>32.2±2.7</td>
<td>44.4±2.2</td>
<td>32.2±2.7</td>
<td>15.7±2.2</td>
<td>28.8±1.4</td>
<td>29.577**</td>
</tr>
<tr>
<td></td>
<td><0.01</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁶</td>
<td>43.33±1.5</td>
<td>58.9±2.05</td>
<td>43.33±1.5</td>
<td>25.6±3.13</td>
<td>38.9±2.7</td>
<td>32.153**</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁵</td>
<td>59.99±3.4</td>
<td>74.33±2.1</td>
<td>59.99±3.4</td>
<td>39.99±3.4</td>
<td>52.2±2.1</td>
<td>25.789**</td>
</tr>
<tr>
<td></td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁴</td>
<td>73.33±3.8</td>
<td>88.8±2.2</td>
<td>59.99±3.4</td>
<td>54.4±2.04</td>
<td>69.99±3.8</td>
<td>20.994**</td>
</tr>
<tr>
<td></td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻³</td>
<td>73.33±3.8</td>
<td>88.8±2.2</td>
<td>59.99±3.4</td>
<td>54.4±2.04</td>
<td>69.99±3.8</td>
<td>20.994**</td>
</tr>
<tr>
<td></td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**p< 0.001
Table (4): The relaxant effect of electrical field stimulation on corpus cavernosal strips taken from control and five months diabetic rabbits in the presence and absence of sildenafil (10^-6 M). The strips were precontracted with phenylephrine (10^-5 M).

<table>
<thead>
<tr>
<th>EFS</th>
<th>Control N=6</th>
<th>Control+S N=6</th>
<th>Control N=6</th>
<th>Diabetic N=6</th>
<th>Diabetic+S N=6</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\overline{X} \pm SE)</td>
<td>21.87±2.7</td>
<td>31.25±2.3</td>
<td>21.87±2.7</td>
<td>11.37±1.9</td>
<td>20.8±2.02</td>
<td>13.097**</td>
</tr>
<tr>
<td>P</td>
<td><0.05</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>8Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\overline{X} \pm SE)</td>
<td>44.7±3.4</td>
<td>58.33±2.1</td>
<td>44.7±3.4</td>
<td>25±2.28</td>
<td>42.7±1.9</td>
<td>21.993**</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>12Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\overline{X} \pm SE)</td>
<td>56.3±3.2</td>
<td>70.8±3.09</td>
<td>56.3±3.2</td>
<td>34.37±2.7</td>
<td>54.16±3.1</td>
<td>24.493**</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>16Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\overline{X} \pm SE)</td>
<td>73.95±2.9</td>
<td>87.5±2.28</td>
<td>73.95±2.9</td>
<td>52.28±2.6</td>
<td>70.8±2.08</td>
<td>23.547**</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>20Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\overline{X} \pm SE)</td>
<td>84.4±2.7</td>
<td>96.87±1.4</td>
<td>84.4±2.7</td>
<td>69.8±3.02</td>
<td>81.25±2.3</td>
<td>21.168**</td>
</tr>
<tr>
<td>P</td>
<td><0.01</td>
<td><0.01</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td></td>
</tr>
</tbody>
</table>

**p < 0.001

[Figur (1): The relaxant effect of SNP, Ach and S in the presence and absence of either Ach (10^-9 M) or SNP (10^-8 M) on corpus cavernosal strips taken from control rabbits. The strips were precontracted with phenylephrine (10^-5 M).]
Discussion

It has been well established that corpus cavernosal smooth muscle relaxation required for erectile function is mainly dependent on the neuronal NO-cGMP system (Burnet, 1995; Carter et al., 1998). Many studies have shown that the potentiating effects of NO synthase inhibitors and NO blockers on erectile mechanisms, both in vitro and in vivo (Trigo-Rocha et al., 1993; 1994 & Wang et al., 1993). At present much evidence supports the concept that NO derives from the autonomic innervation of the penis and locally operates as a postganglionic neurotransmitter of non-adrenergic,
The Effect of The Specific Phosphodiesterase

non-cholinergic-mediated penile erection. On its synthesis and release from the nerve terminals within the erectile tissue of the penis, NO diffuses into the adjacent smooth muscle cells of the penis. There, it activates the soluble guanylate cyclase present in smooth muscle cells to produce cGMP, which results in smooth muscle relaxation (Ignarro et al., 1990; Bush et al., 1992; Burnett, 1997). Recent research suggests that NO activates Na\(^+\)-K\(^+\)-ATPase in human and rabbit corporeal smooth muscle musculature, as well as the potassium conductive membrane hyperpolarization pathway in rabbit corporeal smooth muscle cells (Burnett, 1997).

The present study revealed that sildenafil had little effect on the phenylephrine-induced contraction and this effect was potentiated, at least partially, in the presence of acetylcholine. Sodium nitroprusside (SNP) which breaks down spontaneously in aqueous solution to generate NO have a more relaxant effect on corpus cavernosal strips precontracted with phenyl-ephrine than that of sildenafil alone or sildenafil in the presence of acetylcholine. These results are in agreement with that of Aydin et al. (2001).

The dilatation of vascular beds by choline esters is due to the presence of muscarinic receptors, primarily of M3 subtype, despite the lack of apparent cholinergic innervation of most blood vessels. The muscarinic receptors responsible for relaxation are located on endothelial cells of the vasculature; when these receptors are stimulated, the endothelial cells release the endothelium-derived relaxing factor, or NO, which diffuses to adjacent smooth muscle cells and causes them to relax (Brown and Taylor, 1995). Thus, NO release from NANC neurons is not the only mechanism involved in erection. This indicates that the principle mode of action of sildenafil is through enhancement of cAMP accumulation, which is dependent not only on a prior endogenous NANC stimuli but also on the parasympathetic drive acting through NO. Therefore, the relaxing action of sildenafil is at least partially mediated by endothelium.

This proposal, in a way, describes why sildenafil treatment improves erectile function in patients with erectile dysfunction secondary to traumatic spinal cord injury, with no difference in patients who did and did not have residual erectile function at baseline (Hultling et al., 1998). Clinical reports about improved erectile function after radical prostatectomy (Lowentritt et al., 1999 & Zippe et al., 1998) can also be considered within this concept. However, other biochemical substances locally released from the endothelial or smooth muscle components of the erectile tissue may also take part in this function. The premise that NO could modulate corporeal smooth muscle function concerns with its original description as an endothelium-derived relaxing factor, this substance was discovered in vasculature to derive from endothelial cells and to induce vascular smooth muscle relaxation (Palmer et al., 1987). Cholinergic agents, alpha-adrenergic antagonists, endothelium-derived relaxing factor, peptides, prostaglandins, histamine, calcium channel blocking agents, and other nonspecific vasodilators are some of the substances that induce cavernosal muscle relaxation (Anderson, 1993 & Holmquist et al., 1990).

However, the present study showed that acetylcholine alone when used at high concentrations was a more effective relaxant agent than all other treatment agents including the combination of sodium nitroprusside
and sildenafil. This contradictory result implies that although acetylcholine releases NO by stimulating muscarinic receptors at lower concentrations, high concentrations of acetylcholine has a direct relaxation effect on isolated rabbit cavernosal smooth muscle. The relaxation effect of acetylcholine at higher concentrations may be mediated by decreasing the intracellular sequestration, probably by direct reduction of calcium transport by way of voltage-dependent calcium channels or sarcoplasmic reticulum not by hyperpolarization or NO. Extensive studies are needed for clarification.

The data of the present study indicate that sildenafil enhances the relaxing effect of both SNP and Ach on phenylephrine-induced contractions of rabbit cavernosal tissue in varying degrees. However, functional organ both studies must be interpreted with caution. Because the cyclic nucleotide turnover rates in isolated tissue preparations are low, relatively high concentrations of phosphodiesterase inhibitors are needed to elevate the cyclic nucleotide levels and produce a significant tissue response. Additionally, the effects of sildenafil on rabbit corporeal smooth muscle may not be entirely translatable to humans, even though the phosphodiesterase isoenzyme distribution may be similar homogenously.

The present study revealed that SNP-stimulated corpus cavernosal smooth muscle relaxation was impaired in diabetic rabbits compared to age matched controls. This impairment was enhanced in the presence of sildenafil which was observed to enhance SNP-stimulated relaxation of corpus cavernosal tissue from age-matched control rabbits. These finding are in accordance with those of Ballard et al. (1996) and Rendell et al. (1999) who showed that sildenafil potentiates NO-mediated corpus cavernosal relaxation of healthy rabbits and reported that sildenafil enhances cGMP formation and accumulation. Our findings are also in agreement with that of Thompson et al. (2001) and Utkan et al. (2001) who showed that SNP-stimulated cGMP formation was impaired in diabetic rabbit corpus cavernosal tissue and it was improved in the presence of sildenafil. These studies together with our study provide evidence for the possibility of using selective phosphodiesterase inhibitors in the treatment of diabetic impotence.

Since SNP dissociates in solution to generate NO, which in turn activates guanylyl cyclase, these results suggest that diabetes mellitus impairs the activity of this enzyme causing a reduction in cGMP production. This finding is in contrast, however, to an earlier study that showed that cGMP formation was enhanced in the corpus cavernosum from diabetic rats (Miller et al., 1994). These differences may be ascribed to species variation and severe catabolic status of the diabetic rats (Thompson and Mikhailidis, 1992). The diabetic rat is not an ideal model to use in the present study, since unlike the diabetic rabbit and man, it has elevated high density lipoprotein levels and is not prone to atherosclerosis which is also an established risk factor for erectile dysfunction (Virag et al., 1984; Krane et al., 1989; Azadzoï and DeTejada, 1991).

Sildenafil is a selective and potent phosphodiesterase type V inhibitor that inhibits the hydrolysis of cGMP, thereby elevating levels of this cyclic nucleotide (Jeremy et al., 1997). As sildenafil normalized the reduced SNP-mediated relaxations of diabetic corpus cavernosum, we suggest that the actions of this drug can compensate for the diabetes-induced impairment of
The Effect of The Specific Phosphodiesterase

guanylyl cyclase activity and demonstrate that type V phosphodiesterase activity is intact in diabetic corpus cavernosal tissue. Thompson et al. (2001) found that SNP & Ach-stimulated cGMP formation was impaired in the diabetic group compared to age-matched controls and observed that this impairment was overcome in the presence of sildenafil. As stimulation by ACh is dependent on NO release by the activation of endothelial NO-synthase (e NOS) leading to endothelium-dependent NO-mediated smooth muscle relaxation, there could also be a defect in eNOS activity in diabetics apart from impaired guanylyl cyclase activity as previously suggested by Sullivan et al. (1998) who also showed that SNP-stimulated cGMP formation was not significantly different between age-matched controls and diabetic corpus cavernosal tissues.

It is now accepted that NANC neurotransmission plays an important, if not a key role in mediating penile erection (Kim et al., 1991; De Tejada, 1992; Trigo-Rocha et al., 1993; Finberg et al., 1993). One of the principal neurotransmitters released by NANC neurons is NO, which causes the formation of cGMP and corpus cavernosal relaxation (Bredt and Snyders, 1994).

In the present study, a significant impairment in electrical field stimulation-mediated corpus cavernosal relaxation after 5 months of diabetes mellitus was found. This result is in line with that of Thompson et al. (2001). Since electrical field stimulation elicits relaxation through activation of the NANC neurons that innervate the corpus cavernosum, these data suggest that diabetic neuropathy may have developed after 5 months of diabetes mellitus. There is evidence to support this supposition, since early signs of vascular neuropathy characterized by a reduction in the neuronal content and release of noradrenalin by sympathetic nerves is evident in rabbits 6 weeks after the induction of diabetes mellitus (Cohen et al., 1990). It is therefore conceivable that with time, the biochemical changes could cause some degree of neuropathy. In turn, this could lead to the impairment of this NANC pathway, resulting in erectile dysfunction. Reduced relaxation to electrical field stimulation in corpus cavernosal tissue taken from diabetic patients with erectile dysfunction has also been reported (Pickard et al., 1994). Interestingly, this was associated with a lack of NO production and not an inherent inability of the corpus cavernosum to relax.

A reduction in NO could result from a defect in NO synthesis and thus NANC neurotransmission or quenching of NO through the production of superoxide radicals and advanced glycosylation end-products (Ceriello et al., 1991; Hoffman et al., 1995). As these factors are thought to play a role in the pathogenesis of diabetic erectile dysfunction. Sildenafil was found to enhance the relaxation of the corpus cavernosum in response to electrical field stimulation in age-matched controls and 5 months diabetic rabbits.

The present findings suggest that despite the early development of diabetic neuropathy, sildenafil still remains effective in eliciting corpus cavernosal smooth muscle relaxation although we can not predict how effective it would be if severe neuropathy is present. In such cases co-administration of a NO-donor may compensate for the impairment of NO bioavailability, not only as a result of impaired NANC neurotransmission but also as a consequence of impaired corpus cavernosal endothelial function.
and diabetes-induced advanced-glycosylation end-products or superoxide formation.

References

The Effect of The Specific Phosphodiesterase

randomized control trial. JAMA 281, 421-426.
تأثير السيلدينافيل ستريت المثبط النوعي ل إنزيم الفوسفوداي إستيريز5 على عضلات الجسم الكهفي المفسدة للأربن المصاب بمرض السكر المحدث بمادة الألوكسان

صفوت السيد أبو هاشم* - كريمان الحسيني سليمة** - سعاد عبد الله سليم**

هشام الجندي* - أحمد اليمين عبد العال

* قسم المسالك البولية - ** قسم الفيسيولوجيا - كلية الطب جامعة الزقازيق

لقد أجريت هذه الدراسة لفحص:

تأثير كلي من عقار السيلدينافيل المثبط لعمل إنزيم الفوسفوداي إستيريز5 ونيتروبروسيد الصوديوم الذي يؤدي إلى زيادة أكسيد النتريتك دون الاعتماد على الغشاء المبطن للجسم الكهفي والأسيتيل كولين الذي يؤدي إلى زيادة أكسيد النتريتك اعتماداً على الغشاء المبطن للجسم الكهفي بطريقة متفردة ومجمعة على شريط الجسم الكهفي المعزول والمقضية بتثبيت مادة الفينيل أفرین.

التأثيرات الغير أدوية أو غير الكولينجيتية التي تم من خلال أكسيد النتريتك على شرائح الجسم الكهفي المعزول للأربن المصاب بمرض البول السكري لمدة خمسة شهور وحينما تجري سحب مريض عن طريق الحقن الوريدي لمادة الألوكسان بجرعة قدرها 65 مجم/كمج وقد سبق انتقاب هذه العضلات المصابة بماده الفينيل أفرین.

تأثر المجال الكهربائي على شرائح الجسم الكهفي المعزول من الأربن المصاب بمرض البول السكري والمقضية بمادة الفينيل أفرین وذلك في وجود وغياب نيتروبروسيد السيلدينافيل.

وقد أظهرت الدراسة أن كلاً من الأسيتيل كولين ونيتروبروسيد الصوديوم والسيلدينافيل ذو تأثير انتستاتي على العضلات المصابة للجسم الكهفي المعزول والمقضية بمادة الفينيل أفرین وأن تأثير الأسيتيل كولين منفرد كان أقوى من تأثير نيتروبروسيد الصوديوم في وجود السيلدينافيل بينما تأثير نيتروبروسيد الصوديوم منفرد ثم تأثير الأسيتيل كولين في وجود السيلدينافيل ثم تأثير السيلدينافيل منفرد والذي يعتبر آلماً ثابتاً للانقراض العضلي المحدث بتثبيت الفينيل أفرین.

أما بالنسبة للمجموعة المصابة بمرض البول السكري فقد أوضح الدراسة أن:

التأثير الانتستاتي لمادة نيتروبروسيد السيلدينافيل على عضلات الجسم الكهفي المعزول والمقضية بمادة الفينيل أفرین أقل درجة كبيرة ذات دلالة إحصائية مقارنة بالمجموعه السليمة الضابطة وقد تحسن هذا التأثير الانتستاتي بمادة الفينيل أفرین تحت تأثير المجال الكهربائي مقارنة بالمجموعه السليمة الضابطة ولكن بإضافة عقار السيلدينافيل لوحظ أن هناك تحسس ذو دلالة إحصائية في الاستجابة الانتستاتية.

وهكذا فإن هذه الدراسة تخلص إلى أن عقار السيلدينافيل المثبط النوعي لإنزيم الفوسفوداي إستيريز 5 والذي يؤدي بدوره إلى زيادة تركيز جوانز أحادي الفوسفات لبعض من الأحماض في علاج خلل الانتستاتي لعضلات الجسم الكهفي المصابة بمرض البول السكري الذي يحدث نقصاً في تركيز أكسيد النتريتك المفرز من كل من الأحماض الغير أدوية أو غير الكولينجيتية على جسم الكهفي وذلك من الغشاء المبطن للجسم الكهفي.

Figure (2): The effect of SNP (10^-9-10^-3 M) on phenylephrine (10^-5 M)-induced tone of corpus cavernosal strips taken from control and five months diabetic rabbits in the presence of sildenafil (10^-6 M).