Prevalence of Asymptomatic Bacteriuria in Patients with Preterm Labor
Hossam Aldin Hussein Kamel, Mostafa Hussein Mohammed Hegab,
Ahmad Al-saeed Al-sehrawey, Hassan Mohammed Hassan
Department of Obstetrics and Gynecology, Faculty of Medicine – Al-Azhar University

ABSTRACT
Background: asymptomatic bacteriuria (ASB) during pregnancy is the primary cause of acute pyelonephritis, preterm labor, low birth weight fetus, etc., if left untreated. Adequate and early treatment reduces the prevalence of these obstetric complications.
Objectives: this study aimed to determine the prevalence of ASB during pregnancy and determine the association between asymptomatic bacteriuria and spontaneous preterm birth.
Patients Methods: this was a case control study of 120 preterm pregnancies and 40 term pregnancies among those attending El-Galaa Teaching Hospital, Obstetric Emergency Unit to evaluate the incidence of ASB and determine the association between asymptomatic bacteriuria and spontaneous preterm birth from March 2016 to March 2017.
Results: out of the 160 patients studied, ASB was observed in 7 patients (6 cases in preterm group (5%) and 1 case in full term group (2.5%) with no significant difference between the two groups (p-value > 0.05), the incidence of ASB in preterm labor was quite lower 5%. E. coli was the most common pathogen (55.14%) followed by proteus 28.57 followed by klebsiella (14.28%).
Conclusion: all pregnant women should be screened by urine culture to detect asymptomatic bacteriuria at their first visit to prevent overt urinary tract infections (UTI) and other complications in both mother and fetus.
Keyword: preterm labor, urinary tract infections, asymptomatic bacteriuria

INTRODUCTION
Asymptomatic bacteriuria in pregnancy is defined as the presence of ≥ 1,00,000 organisms per milliliter (ml) of urine taken from a clean catch mid-stream urine specimen with no symptoms referable to the genito-urinary tract. However, ASB often is the primary cause of complications such as pyelonephritis, preterm labor, low birth weight fetus, maternal Sepsis, anemia and prenatal death [1].

Treatment of ASB has been shown to reduce the rate of pyelonephritis in later part of pregnancy and therefore regular screening for and appropriate treatment of ABU has become a standard of obstetrical care [2].

Urinary Tract Infections (UTI) is the microbial invasion and subsequent multiplication on part or entire urinary tract [3].

Pregnancy causes numerous changes in the physiology of a woman’s system. Various anatomic and physiological changes which include dilatation of the renal pelvis and ureters in as early as the eighth week of pregnancy [4] and displacement of the bladder itself superiorly and anteriorly are responsible for ASB.

Also, smooth muscle relaxation induced by progesterone may also play a role. As a consequence of smooth muscle relaxation peristalsis of the ureters are decreased, bladder capacity is increased which in turn lead to urinary stasis [5]. Henceforth, screening and treatment of ASB prerequisite to be incorporated as routine antenatal care for an integrated approach to safe motherhood and newborn health. Bacteriuria occurs commonly in pregnancy, typically during early pregnancy. Without treatment, as many as 30 to 40 percent of pregnant women with asymptomatic bacteriuria will develop symptomatic urinary tract infection (UTI). The smooth muscle relaxation and subsequent ureteral dilatation that occurs in pregnancy are thought to facilitate the ascent of bacteria from the bladder to the kidney, accounting for the greater risk of pyelonephritis. Additionally, untreated bacteriuria may be associated with an increased risk of preterm birth, low birth weight, and perinatal mortality [6].

PATIENTS AND METHODS
This was a case control study in 120 preterm pregnancies and 40 term pregnancies among those attending El-Galaa Teaching Hospital, Obstetric Emergency Unit to evaluate the incidence of ASB from March 2016 to March 2017.
- Urine samples were collected employing the clean-catch, mid-stream technique after appropriate local hygiene procedure.
- Samples were transported to the laboratory and processed within ONE hour of collection.
- All urine samples were subjected to the standard complete urine analysis procedure.

- While, physical examination was carried out on the whole sample, after centrifugation the supernatant portion was subjected to chemical testing and examined microscopically.
- Any urine sample showing pus cell count ≥10 pus cells/HPF was further subjected to culture procedure.
- These selected samples were cultured on appropriate culture media and viable bacterial cell count was done utilizing the micro calibrated loop (1µ) method.
- For any sample showed a viable colony count 10^5 CFU/ml, the isolated organism was identified by Colony morphology.
- Gram stain.
- Biochemical reaction.
- Antibiotic sensitivity was performed by the standard disc diffusion method according to the CLSI.

Results were tabulated and analyzed by using Epi Info program.

RESULTS

Table (1): Incidence of ASB and the prevalence of positive urine cultures in preterm and full term groups:

<table>
<thead>
<tr>
<th></th>
<th>preterm group</th>
<th>Full term group</th>
<th>Total</th>
<th>Ch.sq</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive bacteriuria</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative bacteriuria</td>
<td>114</td>
<td>39</td>
<td>153</td>
<td>0.04</td>
<td>0.681 NS</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>40</td>
<td>160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As shown in table (1): The incidence of asymptomatic bacteriuria (ASB) in group I preterm group (cases) was 5% (6/120 cases) while the incidence of ASB in group II full term group (control group) was 2.5% (1/40) with no statistical significant difference between the two groups (p-value >0.05).

Table (2): Different micro-organisms isolated from cases with asymptomatic bacteriuria (n=7):

<table>
<thead>
<tr>
<th>Organism</th>
<th>Cases group (n=120)</th>
<th>Control group (n=40)</th>
<th>Total</th>
<th>Ch.sq</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.coli</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0.68</td>
<td>1</td>
</tr>
<tr>
<td>Klebsiellapneumoniae</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.75</td>
<td>1</td>
</tr>
<tr>
<td>Proteus</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0.56</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td></td>
<td>NS</td>
</tr>
</tbody>
</table>

As shown in table (2) E.coli was isolated from 57.14% of positive cases, while Proteus was isolated from 28.57% of positive cases while Klebsiellapneumoniae was isolated from 14.28% of positive cases.

Table (3): bacterial sensitivity to different antimicrobials of positive cases (n=7)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Number of sensitive cases</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nalidixic acid</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Cefoperazone</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Amoxicillin+clavulanic acid</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trimethoprim +sulphamethoxazole</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>4</td>
<td>57.14</td>
</tr>
<tr>
<td>Imipenem</td>
<td>4</td>
<td>57.14</td>
</tr>
<tr>
<td>Amikacin</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Ampicillin/sulbactum</td>
<td>4</td>
<td>57.14</td>
</tr>
<tr>
<td>Cefepime</td>
<td>4</td>
<td>57.14</td>
</tr>
</tbody>
</table>

As shown in table (3), nalidixic acid, cefoperazone, gentamycin, ciprofloxacin, norfloxacin, trimethoprim and sulphamethoxazole were considered the most effective antibiotics against the most common organisms causing asymptomatic bacteriuria in this study however nitrofurantoin and Ampicillin/sulbactum are sensitive to E.coli and this antibiotics are most safe during pregnancy.

DISCUSSION

The present study reveales that the prevalence of ASB among pregnant women attending El-Galaa Teaching hospital obstetric emergency unit as 5% in patient with preterm labor and 2.5% in patient with term deliveries, (p-value >0.05) with no significant difference between the two groups.

Similar prevalence of ASB 6.1%, 7.5%, 9.8%, among antenatal women was reported by Ahmad et al in Kashmir, India[7], Saraswathi and Aljabri in Hyderabad, India[8], Marahatta et al in Kathmandu, Nepal[9], respectively. However higher prevalence of ASB 11.2%, 13.7% and 16%, 16.1%, 21%, 29.1%, 38.3% and 45.3%, was revealed by Chitralekha et al in Chennai, India[10], Saeed and Tariq in Karachi, Pakistan[11], Ansari and Rajkumari in Hyderabad, India[12], Abdul Kairan et al in Adama, Ethiopia[13], Akinloye et al in Nigeria[14], Rahimkhani et al in Tehran Iran[15], Rizvi et al in Aligarh, India[10] and Imade et al in Benin City Edo state[17], Nigeria respectively.

The reported prevalence of ASB was 30%, 4.8%, 9.9% and 3.3-6.1% among pregnant women in Yemen, United Arab Emirates (UAE), Qatar and Iran respectively[18].
This variation in studies can be attributed to several factors such as geographical variation, socioeconomic status, ethnicity of the subjects, setting of the study (primary care, community based, or hospital), and the variation in the screening tests (urine dipstick, microscopy, and culture). Race-specific rates show significant variation, as well as there is variation within the same race living in different geographical areas or with socio-economic status. Thus, it is important to evaluate the prevalence of ASB in a specific population[14].

E. coli was the most common pathogen (55.14%) followed by proteus 28.57 followed by klebsiella (14.28%).

E. coli has been identified as the most common pathogen isolated among pregnant women in this study, which was consistent with Adeghaet al they found that E. coli causes 70-95% of both upper and lower UTIs[19]. Also this study consistent with study done by Abdul Kairun et al.; they found that The most common isolated organism was E. coli followed by Klebsiellasp. Proteus mirabilis, the least found bacteria was P. aeruginosाँ[13]. The data collected from different places around the world showed that E. coli is still commonest pathogen in ASB like our study. Marahatta et al.[10], Chitralekha et al.[11], Ahmad et al.[9], and Rizvi et al.[17].

During pregnancy there is increase in levels of amino acids and lactose which particularly encourages E. coli growth. It could also be due to infection by fecal contamination due to poor hygiene during pregnancy.[20]. E. coli is the most common etiologic agent in asymptomatic and symptomatic bacteriuria of pregnancy.[18][21][22].

The antibiotic sensitivity patterns in this study show that most of the bacterial isolates were 100% sensitive to nitrofurantoin, nalidixic acid, cefoperazone, gentamycin, ciprofloxacin, norfloxacin, trimethoprim – sulphamethoxazole, while 57.14% sensitive to, ampicillin/sulbactum, cefepime, ofloxacin, and resistant to amoxicillin and clavulanic acid. However, these antibiotics have limited use in pregnancy; Nitrofurantoin was found to be most safe effective drug observed in this study.

Prescription of antibiotics without laboratory guidance as well as over-the-counter sales of antibiotics without prescription is also a probable factor for increased bacterial resistance to antimicrobial agents (amoxicillin and clavulanic acid). In conclusion, the present study showed that the incidence of ASB in preterm labor at El-Galaa Teaching hospital obstetric emergency unit is 5%. Nitrofurantoin was the most effective and safe antibiotic.

Women with ASB may have serious consequences on both mother and fetus. Therefore, it is important to screen all antenatal women for asymptomatic bacteriuria at their first prenatal visit, preferably in first trimester, and those who are positive should be followed up closely after treatment because about one-third will experience a recurrence [18]. All the sequelae of ASB during pregnancy could be reduced by antimicrobial treatment early in pregnancy. It is time that we have a look at this strategy for improving the healthcare and for reducing the maternal and fetal morbidity and mortality[23].

REFERENCES
Prevalence of Asymptomatic Bacteriuria

