Diagnostic Validity of Cone Beam Computed Tomography Radiography in Detection of Dental Caries
Ghaida Abbas Katib¹ and Reem Mazen Alfuraih²
(1) Ibn Sina National Collage, General Dentist in Primary Health Care, (2) Alfarabi Colleges, Saudi Arabia

Abstract
Introduction: Comparison between tomography and one or more digital intra-oral systems have been conducted with histological sectioning of the offending teeth as gold standard for comparison. The findings in the literature are contradicting, since some studies showed superiority of tomography. This systematic review aimed at evaluating the evidence in relation to the diagnostic accuracy of cone beam computed tomography compared to the digital and film-based intra-oral radiography.

Methods: An electronic search was conducted on Medline Plus, PubMed, Science Direct, and Wiley databases. All articles published in English language up to October 2017 were eligible to be included in this review. Search on different search engines and different database websites including hand search revealed 496 articles. After reading titles and abstracts, irrelevant and duplicated articles 459 were excluded. The resulting articles were read carefully for comparison of accuracy between CBCT and other intra-oral radiographic systems and the references lists of the resulting articles were screened for additional studies.

Results: A total of 22 articles, available according to the inclusion criteria, were included in this systematic review. Most of the studies (13 articles) were conducted on premolars and molars while, 5 studies were conducted on molars, one study was conducted on premolars, one study was on incisors, and two studies did not report the type of teeth used. The majority of the studies (21 articles) were laboratory experiments (in-vitro) while, only one study was in-vivo. The sample size for the studies (number of teeth) ranged from 30 to 257 teeth.

Conclusions: CBCT has similar diagnostic accuracy as other intra-oral systems for diagnosing dental caries. CBCT is not recommended for caries diagnosis unless the CBCT was undertaken for any other procedures where the dental caries should be included in the final report.

Keywords: Tomography, Radiography, Dental caries, Accuracy, Intraoral

INTRODUCTION
Dental caries is considered one of the most chronic diseases worldwide, causing demineralization of dental hard tissues. This lesion will progress under the microbial biofilm unless the biofilm is totally removed (¹). Various classification systems have been reported to facilitate the diagnosis of carious lesions by clinical visual examination. This method is reliable and possible for visible surfaces such as occlusal, buccal or lingual surfaces whereas its ability is limited for diagnosis of the carious lesions in the proximal surfaces. Less than 50% of cavitated lesions on the proximal surfaces can be detected by clinical visual examination (²).

Digital radiography is used widely in dental practice and there is considerable increase in the number of clinics which tend to use it. It has shown several advantages over the conventional film images. Display of the digital images has been facilitated by providing software programs working on conventional PC monitors (³). These programs have many different tools for adjusting and optimizing the images for different diagnostic tasks. The diagnostic performance of digital radiography has been widely studied in laboratory experiments. Some studies reported that digital radiography have more accuracy than film radiography in detecting caries while some other studies reported that digitized films have the same accuracy of charge-coupled device (CCD) system. In contrast, paper-print images of CCD system have less accuracy than film images (³). One drawback of the laboratory experiments is that the mechanically created lesions have the opportunity to be detected by radiography more than those created naturally (³). This will reflect negatively on the results of these types of studies and should be taken with precautions. Three-Dimensional radiographic modality is or cone beam computed tomography (CBCT) is a new radiographic modality in the dental clinic. It is a volumetric-based image where the tomographic sections are obtained in given resolutions which then are

Received: 14/9/2018
Accepted: 24/9/2018
joined together to form a cubic pixel. Comparison between CBCT and one or more digital intra-oral systems has been conducted with histological sectioning of the offending teeth as gold standard for comparison. It was reported in most of these studies that CBCT has no superior accuracy than other digital intra-oral systems for detection of the carious lesions on the proximal surfaces. On the other hand, some other authors have reported that CBCT has slightly higher accuracy than other intra-oral images in detecting the depth of carious lesion. This systematic review aimed at evaluating the evidence in relation to the diagnostic accuracy of CBCT compared to the digital and film-based intra-oral radiography.

METHODS

An electronic search was conducted on Medline Plus, PubMed, Science Direct, and Wiley databases. Keywords used for this research included; dental caries, dental decay, cone beam computed tomography, CBCT scan, periapical radiography, bitewing radiography, intraoral radiography, panoramic radiography, and accuracy. The flow of the information through the different stages of the systematic review (identification, screening, eligibility, inclusion) was demonstrated in Figure (1). All articles published in English language up to October 2017 were eligible to be included in this review. Search on different search engines and different database websites including hand search on the public search engine (Google Scholar) revealed 496 articles. After reading titles and abstracts, irrelevant and duplicated articles 459 were excluded. The resulting articles were read carefully for comparison of accuracy between CBCT and other intra-oral radiographic systems and the references lists of the resulting articles were screened for additional studies. Review articles and articles without CBCT comparison were excluded. Therefore, the included articles for this review were 22 articles. Extraction of the data in relation to the required information was ensured by two reviewers. The data extraction form included: type of the study, number of teeth, type and location of caries, type of CBCT used, type of other intra-oral radiography, accuracy of CBCT, accuracy of the compared techniques, and conclusion of the study.

RESULTS

A total of 22 articles, available according to the inclusion criteria, were included in this systematic review (Table 1). Most of the studies (13 articles) were conducted on premolars and molars while, 5 studies were conducted on molars, one study was conducted on premolars, one study was on incisors, and two studies did not report the type of teeth used. The majority of the studies (21 articles) were laboratory experiments (in-vitro) while, only one study was in-vivo. The sample size for the studies (number of teeth) ranged from 30 to 257 teeth. However, some studies performed the diagnosis on more than one surface of the teeth. Five studies aimed to test the accuracy of CBCT in detecting the carious lesions on the occlusal surfaces while, eight studies compared the accuracy in detecting the proximal lesions. Three studies were conducted to compare the accuracy in detecting mechanically-created secondary lesions under restorations (amalgam and composite). Four studies were conducted on cavitated carious lesions. Three studies were conducted on carious lesions on both occlusal and proximal surfaces. Different brands of CBCT and other intra-oral radiographies were used. Newtom 3G was used in 8 studies, Accuitomo was used in six studies, Promax and Kodak 9000 3D were used in four studies, equally. ILUMA was used in three studies while, Limited CBCT, DCT Pro, and Sirona were used in two studies, equally. Pax 500 ECT, I-CAT, and Cranex were used in one study, equally. For the compared techniques, conventional film-based system was used in 14 studies, PSP system was used in 13 studies, CCD system was used in 3 studies while, Sirona, Vitascan, RVG, and K 9000 were used in one study equally. Diagnostic accuracy of CBCT and the other intra-oral techniques were reported as area under the receiver operating characteristic (ROC) curve (Az) in most of the studies. Some other studies reported the diagnostic accuracy as Kappa test between the observers’ opinions. The accuracy of the different techniques varied considerably among the different studies. In general, accuracy of CBCT ranged from 39% to 99%; most of them were between 50% and 70% while, accuracy of the compared techniques ranged from 34% to 95%; most of them were between 50% and 60%.
Figure (1): Flow diagram of the included studies in the systematic review

Table (1): The findings of the included studies regarding accuracy of dental tomography

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Sample size</th>
<th>Type of teeth assessed</th>
<th>Type of dental caries assessed</th>
<th>Technique of CBCT</th>
<th>Compared techniques</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charuakkr a et al.</td>
<td>120</td>
<td>Premolars and molars</td>
<td>Mechanically created secondary caries</td>
<td>- Pax-500 ECT - Promax 3D</td>
<td>Conventional</td>
<td>CBCT images were better in detection of secondary caries.</td>
</tr>
<tr>
<td>Wencel et al.</td>
<td>257</td>
<td>Premolars and molars</td>
<td>Cavitiated proximal caries</td>
<td>Accuitomo 3D</td>
<td>- PSP - CMOS sensor</td>
<td>CBCT was more accurate in detection of cavitated proximal surface.</td>
</tr>
<tr>
<td>Krzyzostan et al.</td>
<td>135</td>
<td>Premolars and molars</td>
<td>Non-cavitated occlusal and proximal caries</td>
<td>Newton 3G</td>
<td>- Conventional - PSP</td>
<td>- CBCT was significantly worse than other radiographic techniques.</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>39</td>
<td></td>
<td>Non-cavitated proximal caries</td>
<td>- Promax 3D - Kodak 9000 3D</td>
<td>- Conventional - PSP</td>
<td>- CBCT was similar to the other radiographic techniques.</td>
</tr>
<tr>
<td>Young et al.</td>
<td>192</td>
<td>Premolars and molars</td>
<td>Occlusal and proximal caries</td>
<td>Accuitomo 3D</td>
<td>Conventional</td>
<td>CBCT was better in detecting proximal caries extending to dentin but not occlusal.</td>
</tr>
<tr>
<td>Ramezani et al.</td>
<td>88</td>
<td>Molars</td>
<td>Occlusal</td>
<td>Newton 3G</td>
<td>PSP</td>
<td>- CBCT was slightly better but with no significant difference.</td>
</tr>
<tr>
<td>Akdeniz et al.</td>
<td>41</td>
<td>Premolars and molars</td>
<td>Mechanically created proximal caries</td>
<td>- Limited CBCT - Accuitomo 3D</td>
<td>- Conventional - PSP</td>
<td>- Limited CBCT was better than other techniques in detecting the depth of small proximal caries.</td>
</tr>
<tr>
<td>Kayigma et al.</td>
<td>72</td>
<td>Premolars and molars</td>
<td>Occlusal and proximal caries</td>
<td>Kodak 9000 3D</td>
<td>- Conventional - PSP</td>
<td>- CBCT was better in detecting occlusal caries.</td>
</tr>
<tr>
<td>Sousa Melo et al.</td>
<td>30</td>
<td>Molars</td>
<td>Mechanically created proximal recurrent caries under amalgam and composite restorations</td>
<td>- I-CAT02 - I-CAT04</td>
<td>- Digora - Vitascan - RVG 6100 - K 9000</td>
<td>CBCT has similar effectiveness to intraoral digital radiography in detecting proximal caries under restorations particularly composite restorations.</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Teeth Type</td>
<td>Caries Type</td>
<td>Systems Compared</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Kasrai et al. (13)</td>
<td>45</td>
<td>Molars</td>
<td>Mechanically created proximal recurrent caries under composite restorations</td>
<td>Cranex 3D, Newton 3G</td>
<td>CBCT has higher diagnostic accuracy than other techniques in detecting secondary caries under composite restorations.</td>
<td></td>
</tr>
<tr>
<td>Qu et al. (14)</td>
<td>39</td>
<td>Non-cavitated proximal caries</td>
<td>Newton 3G, Accutomo 3D, Kodak 9000 3D, Promax 3D, DCT PRO</td>
<td>No significant differences were found between all systems in detecting non-cavitated proximal caries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheng et al. (15)</td>
<td>45</td>
<td>Premolars and molars</td>
<td>Non-restored proximal caries</td>
<td>Promax 3D, DCT PRO (with different resolutions)</td>
<td>No significant differences were found between all systems in detecting non-cavitated proximal caries.</td>
<td></td>
</tr>
<tr>
<td>Sa'ef et al. (16)</td>
<td>42</td>
<td>Premolars and molars</td>
<td>Newton 3G, Conventional, PSP</td>
<td>No significant differences were found between all systems in detecting non-cavitated proximal caries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krzyzostaniak et al. (17)</td>
<td>135</td>
<td>Premolars and molars</td>
<td>Newton 3G, Conventional</td>
<td>No significant differences were found between both systems in detecting non-cavitated proximal caries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senel et al. (18)</td>
<td>138</td>
<td>Premolars and molars</td>
<td>ILUMA, Conventional, PSP, CCD</td>
<td>No significant differences were found between all systems in detecting non-cavitated proximal caries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsuchida et al. (19)</td>
<td>50</td>
<td>Premolars</td>
<td>Accutomo 3D, Conventional</td>
<td>CBCT could not enhance the accuracy in detecting the proximal caries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velizadeh et al. (20)</td>
<td>84</td>
<td>Premolars and molars</td>
<td>Newton 3G, Conventional</td>
<td>CBCT did not enhance the accuracy of detecting the proximal caries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rathore et al. (21)</td>
<td>60</td>
<td>Premolars and molars</td>
<td>Sirona Galileos CBCT, PSP</td>
<td>No significant difference was found between both systems. CBCT can not be used for the sole purpose of detecting caries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalathigal et al. (22)</td>
<td>24</td>
<td>Premolars and molars</td>
<td>Sirona local CBCT, Sirona digital radiography</td>
<td>- No significant difference was found between both systems in detecting the depth of caries. - CBCT was more accurate in detecting the depth of caries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamburoglu et al. (23)</td>
<td>21</td>
<td>Molars</td>
<td>Accutomo 3D, ILUMA</td>
<td>- Micro-CT performed better in detecting the depth of occlusal caries. - CBCT was similar to intraoral radiographs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamburoglu et al. (24)</td>
<td>130</td>
<td>Molars</td>
<td>ILUMA (with different resolutions)</td>
<td>CCD</td>
<td>CBCT performed better than CCD in detection of caries. - No effect was found for the different resolutions in detection of caries.</td>
<td></td>
</tr>
<tr>
<td>Sansare et al. (25)</td>
<td>34</td>
<td>Premolars and molars</td>
<td>Kodak 9000 3D</td>
<td>CBCT was significantly more accurate than conventional in detecting proximal caries. - Caries should be reported in CBCT when this type of radiography has been taken for another clinical application.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Comparison between CBCT and other different types of intra-oral conventional or digital radiographies was based on the observers’ opinions and histological examination of the...
carious lesions. Despite these criteria in comparison, the majority of studies (22 out of 23) were laboratory-based experiments. Only one in-vivo study conducted by Sansare et al. (28) in which the authors compared the diagnostic accuracy of CBCT and conventional film-based system among patient with carious lesions. Another on laboratory study (27) compared the diagnostic accuracy in detecting dental caries between five types of CBCT without any other intra-oral systems for comparison. Among the available studies, eight studies concluded that CBCT was better than other intra-oral techniques in detecting secondary caries or cavitated carious lesions. However, the study done by Sousa Melo et al. (28) aimed at comparing the diagnostic accuracy of the CBCT and other intra-oral techniques in detecting mechanically-created recurrent caries under amalgam and composites restorations. The results of the study revealed no significant differences between CBCT and other radiographic systems. However, the accuracy of CBCT in detecting carious lesions under composite restorations was higher compared to that accuracy in detecting carious lesions under amalgam. This might be related to the presence of metal (amalgam) in the area of radiation. In this study, however, no conventional film-based system was used for comparison. Krzyżostaniak J, Kulczyk T, Czarnecka B, Wenzel A, Hirsch E, Christensen J, Matzen Wenzel A, Larsen M, Feierskov O (1991): Detection of occlusal caries without cavitation by visual inspection, film radiographs, xeroradiographs, and digitized radiographs. Caries Res., 25(5):365-371.

CONCLUSION
From this systematic review it was concluded that CBCT has nearly the same diagnostic accuracy as other intra-oral systems for diagnosing dental caries. CBCT is not recommended for caries diagnosis unless the CBCT was undertaken for any other procedures where the dental caries should be included in the final report.

CONFLICT OF INTERESTS
No financial sponsoring was received and no conflicts of interests.

REFERENCES

